

Date: 06-04-2024

Dept. No.

Max. : 100 Marks

Time: 01:00 PM - 04:00 PM

SECTION A - K1 (CO1)

Answer ALL the Questions	
1.	Define the following (5 x 1 = 5)
a)	Consistency
b)	Most efficient estimator
c)	Minimum variance unbiased estimator
d)	Likelihood function
e)	Confidence limits
2.	MCQ- Choose the correct option (5 x 1 = 5)
a)	Let T_n be an estimator of θ . If $E(T_n) = \theta$, then i) T_n is a sufficient estimator of θ ii) T_n is an unbiased estimator of θ iii) T_n is a consistent estimator of θ iv) T_n is an efficient estimator of θ
b)	Rao-Blackwell theorem enables us to Minimum variance unbiased estimate through i) Complete Statistics ii) Efficient statistics iii) Sufficient Statistics iv) Unbiased Estimator
c)	Let $E(T_1) = \theta = E(T_2)$, where T_1 and T_2 are the linear functions of the sample observations. If $V(T_1) \leq V(T_2)$ then: i) T_1 is an unbiased linear estimator ii) T_1 is the best linear unbiased estimator iii) T_1 is a consistent linear unbiased estimator iv) T_1 is a consistent best linear unbiased estimator
d)	The maximum likelihood estimates, which are obtained by maximizing the function of Joint Density of random variables are generally: i) Unbiased and inconsistent ii) Unbiased and consistent iii) Consistent and invariant iv) Invariant and unbiased
e)	The random interval $\left(\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\chi_{n-1, \alpha/2}^2}, \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\chi_{n-1, 1-\alpha/2}^2} \right)$ gives the confidence interval for i) Mean μ of a normal population when σ^2 is known

ii) Mean μ of a normal population when σ^2 is unknown
 iii) Variance σ^2 of a normal population when μ known
 iv) Variance σ^2 of a normal population when μ unknown

SECTION A - K2 (CO1)

Answer ALL the Questions

3. True or False	(5 x 1 = 5)
a)	Unbiased estimator is always function of complete sufficient statistic
b)	An unbiased estimator T of $\gamma(\theta)$ for which Cramer Rao lower bound of $V(\theta)$ is attained, is called a minimum variance bound estimator.
c)	Let X_1, X_2, \dots, X_n be a random sample from $N(0, \theta)$, then $T = X_1$ is a complete statistic for θ .
d)	Method of moment estimators are always unique.
e)	An Interval Estimate is an estimate of the range of possible values for a population parameter.
4. Fill in the blanks	(5 x 1 = 5)
a)	Let $\{T_n\}$ be sequence of estimators such that for all $\theta \in \Theta$, (i)----- and (ii) ----- then, T_n is a consistent estimator of $\gamma(\theta)$
b)	Let x_1, x_2, \dots, x_n be a random sample from a density function $f(x, \theta)$. A statistic $T = t(x_1, x_2, \dots, x_n)$ is said to be sufficient statistics if the conditional distribution of x_1, x_2, \dots, x_n given T is -----
c)	If T is unbiased for $\gamma(\theta)$ and it has the smallest variance among the class of all unbiased estimators of $\gamma(\theta)$, then it is said to be-----
d)	The equation of Maximum Likelihood Estimators is given by -----
e)	The term $(1-\alpha)$ refers to the-----

SECTION B - K3 (CO2)

Answer any TWO of the following **(2 x 10 = 20)**

5. Prove invariance property of consistent estimators
 6. State and prove Cramer-Rao inequality
 7. Prove Lehmann-Scheffe theorem
 8. Prove that, If T_1 is an MVUE of $\gamma(\theta)$, $\theta \in \Theta$ and T_2 is any other unbiased estimator of $\gamma(\theta)$ with efficiency $e = e_\theta$, then the correlation between T_1 and T_2 is given by $\rho = \sqrt{e}$.

SECTION C – K4 (CO3)

Answer any TWO of the following **(2 x 10 = 20)**

9. State and prove Rao-Blackwell Theorem
 10. Obtain Maximum Likelihood Estimators of the parameters of the normal distribution.
 11. If T_1 is an Minimum Variance Unbiased estimator of $\gamma(\theta)$ and T_2 is any other unbiased estimator of $\gamma(\theta)$ with efficiency $e < 1$, then prove that no unbiased linear combination of T_1 and T_2 can be an Minimum Variance Unbiased estimator of $\gamma(\theta)$
 12. Obtain $100(1-\alpha)\%$ confidence limits for the parameter λ of a Poisson distribution.

SECTION D – K5 (CO4)

Answer any ONE of the following **(1 x 20 = 20)**

13. a) X_1, X_2, X_3 is a random sample of size three from a population with mean μ and variance σ^2 . T_1 ,

T_2, T_3 are the estimators used to estimate mean value μ where $T_1 = X_1 - X_2 + X_3$; $T_2 = 2X_1 - X_2 + 3X_3$; $T_3 = 1/3 [(\lambda X_1 + X_2 + X_3)/3]$ answer the following (10)
 (i) T_1 and T_2 are unbiased? (ii) Find λ and check T_3 is unbiased and consistent estimator
 (iii) which is the best estimator?
 b) Let X_1, X_2, \dots, X_n be a random sample from $N(\mu, \sigma^2)$ population. Find sufficient estimators μ and σ^2 (10)

14. (a) Obtain $100(1-\alpha)\%$ confidence interval for ratio of variances of two normal populations. (10)
 (b) Given one observation from a population with probability density function

$$f(x, \theta) = \frac{2}{\theta^2} (\theta - x), 0 \leq x \leq \theta$$

 Obtain $100(1-\alpha)\%$ confidence interval for θ . (10)

SECTION E – K6 (CO5)

Answer any ONE of the following **(1 x 20 = 20)**

15. For the double Poisson distribution

$$P(x) = \frac{1}{2} \frac{e^{-m_1} m_1^x}{x!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{x!}; x = 0, 1, 2, \dots$$

 obtain the estimates for m_1 and m_2 by the method of moments.

16. a) Find the MLE of the parameter of the exponential distribution with mean λ . Check whether it is an unbiased estimator (10)
 b) State and prove Factorization Theorem (10)

\$\$\$\$\$\$\$\$\$\$\$\$